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Abstract

Cubic lattice Monte Carlo simulation studies were conducted to examine the effect of confinement on dilute and non-dilute solutions of
polymer chains in a channel with a square cross section. In dilute solutions, the partition coefficient K. with channels of different widths d
followed the scaling-law prediction, and was close to the square of the partition coefficient K with a slit of the same d. The chain with its bulk
radius of gyration greater than ~d/2 adopted a conformation extending along the channel and, with a decreasing channel width, the chain
ends were forced to face outside. The chain conformation in broader channels was a compressed random coil. The K, increased with an
increasing polymer concentration ¢ in the exterior solution equilibrated with the channel. In a weak confinement, K. closely followed K? of
the same ¢ and d. The chains contracted at higher concentrations as they did in the bulk solutions. In a strong confinement, K. was smaller
than K? at the same ¢y, in the semidilute regime, and, at higher concentrations, sharply increased to the value close to K2. © 2002 Elsevier

Science Ltd. All rights reserved.

Keywords: Confinement; Partitioning; Semidilute solution

1. Introduction

Polymer chains, when confined to a small space, exhibit
properties distinctly different from those in the unconfined
space [1,2]. Understanding thermodynamics of confined
polymer solutions is important in separation techniques at
high concentrations such as high osmotic pressure chroma-
tography [3] and phase fluctuation chromatography [4].
Because of limited accessibility to a model porous medium
in experiments, thermodynamics of the confined polymer
solutions have been studied primarily by using computer
simulations [5—11]. In Monte Carlo simulations on a
cubic lattice, we studied the partitioning of monodisperse
polymer chains with a slit between two parallel impene-
trable walls and static properties of the chains in the slit
over a wide range of concentrations [12—18]. The focus
was on the partition coefficient defined as the ratio of the
polymer concentration in the slit to the one in the surround-
ing solution, the density profile in the slit, and the aniso-
tropic chain dimension. Employing direct equilibration
between the slit space and the free space was effective in
evaluating the partition coefficient [12,15-17].

Below we summarize the thermodynamics of athermal
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chains in dilute and non-dilute solutions confined to a slit:
(1) At low concentrations, the partition coefficient K, for the
polymer chains of aradius of gyration Ry with the slit of width
dis givenby —In Ky ~ (Rgo/d)b [12,13,17] with b close to the
value 1/v = 1.695 predicted in the scaling theory [19]. (2) The
partitioning of semidilute solution is determined approxi-
mately by the ratio of the blob size & (correlation length of
monomer density fluctuations) to the slit width just as polymer
chains in dilute solutions are partitioned according to Ryy/d
[12,15]. As a result, the partitioning exhibits a diffuse transi-
tion from a weak penetration to a strong penetration as the
decreasing & becomes smaller than d [20]. (3) The chain
dimension in the direction parallel to the slit walls decreases
with an increasing concentration. The contraction exhibits a
cross-over from that of a two-dimensional chain to that of a
three-dimensional chain as ¢ becomes smaller than d [13,14].
(4) The monomer density decays to zero at the sites on the
wall, forming a depletion layer. The layer becomes thinner
with an increasing concentration [12,15,18]. (5) To bring the
monomer density profile near the wall in agreement with the
scaling theory prediction, a positive constant needs to be
added to the distance to the wall [9-11,18]. In effect, the
polymer chain sees a theoretical wall behind the physical
wall on the lattice points. The constant, called the penetration
depth, is 0.13-0.20 of the lattice unit at low concentrations
and increases to ~0.36 in the semidilute solutions [18].
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The past studies of the confinement effect on the polymer
chains used a slit geometry nearly exclusively [9—18]. There
are only several examples that used a non-slit geometry
[21-26]. Kremer and Binder [21] studied anisotropic
dimensions, structure factors, and diffusion of athermal
chains on a tetrahedral lattice in a square channel. Van
Giessen and Szleifer [23] used cubic lattice Monte Carlo
simulations to examine the anisotropic dimensions and the
chemical potential of athermal chains confined to a slit and a
channel. Off-lattice simulation studies were conducted in a
cylindrical pore [26]. A different system of a polymer chain
grafted onto an end plate of the square channel was also
studied [25]. These studies examined only single-chain
properties, however. Furthermore, confinement by a channel
of a square cross section has not been directly compared
with a hypothetical confinement that would result from
two independent perpendicular slits.

In this report, we confine the polymer chains to a square
channel while still employing a cubic lattice. The geometry
difference is expected to make the confinement thermo-
dynamics different from the one in the slit, especially at
high concentrations. We choose a square cross section for
the channel to facilitate comparison with the results
obtained for the slits.

Our interest in the confinement by the channel is multi-
faceted: (1) For the same wall-to-wall distance, the channel
provides the trapped chain with a stronger confinement
effect. Channel geometry offers a good opportunity to
study the effect of a strong confinement without being
forced to rely on a short wall-to-wall distance. Compared
at the same wall-to-wall distance, the confinement is much
stronger in the channel than it is in the slit. The short wall-
to-wall distance would impose a severe restriction on the
conformation and arrangement of the Ilattice chains,
especially at high concentrations, and might expose short-
comings of the lattice simulations. (2) The confining geo-
metry is one-dimensional. Because the statistics of self-
avoiding walks depends on the dimensionality of the
space, the confinement by the channel will alter the solution
thermodynamics in a way different from the one we have
seen in the confinement by the slit. (3) Typical existing
porous media have pore structures that resemble a cylind-
rical pore at least over a short distance, although the overall
structure may be tortuous with many junctions of cylindrical
sections [1].

2. Simulation methods

Cubic lattice Monte Carlo simulations were conducted for
chains of N = 100 and 500 in a broad range of concentrations.
Athermal chains were generated by using self-avoiding
walks. No interaction was present between different mono-
mers or between a monomer and a channel wall except that
overlap was not allowed. The radius of gyration Ry in the
dilute solution limit in unconfined space is 6.524 and 16.78

for the shorter and longer chains, respectively. The unit
length is a lattice spacing. The bulk overlap monomer
density ¢, defined as (¢"/N)[2"*(Ry + 0.199)] = 1, is
0.1164 and 0.0361, respectively. Addition of 0.199 to Ry
accounts for the correction of ‘volume’ occupied by each
chain [13].

The simulation procedure is similar to the one employed
in our preceding works [12—18]. A simple box of a channel
space only was used to evaluate the density profile and the
chain dimensions. A twin box consisting of a channel space
with a square cross section and an unconfined space adjoin-
ing to the channel was used to obtain the partition coefficient
under direct and full equilibrium condition between the free
and confined spaces. The simple box has a dimension of
L, XL, XL,(L,=Ly; L,=150) with walls at x=0 and
x=1+L,andaty =0andy =1 + L,. A periodic bound-
ary condition was enforced in the z direction. All sites in the
box are available for occupancy by the monomers. The
channel width d is the distance between the walls and
given as d = 1 + L, and ranges between 7 and 50. Polymer
chains were moved by reptation moves following the Metro-
polis rule [27]. In the twin box, the channel space and the
unconfined space had a dimension of L, XL, X 50 and
50X 50 X 50, respectively (L, = L,). A periodic boundary
condition was applied in all directions except where there is
a channel wall. The data of the monomer density and other
quantities were accumulated only after the system reached
an equilibrium. Trial moves (reptation) as many as 7 X 10°
were needed to obtain a smooth density profile.

3. Results and discussion
3.1. Dilute solutions

We first look at the partition coefficient K, in the dilute
solution limit. Fig. 1 shows the confinement entropy,
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Fig. 1. Confinement entropy —In K, of a polymer chain of N = 100 in the
low concentration limit, plotted as a function of the confinement strength
2Ry/d. The closed circles are for a square channel of cross section d X d,
and the open circles are for a slit of width d. The lines are the optimal fit by a
power law.
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Fig. 2. The anisotropic dimensions of the confined chains of N = 100
(closed symbols) and 500 (open symbols), plotted as a function of the
channel width d. The circles and squares denote Ry and R, , the square
root of the components in the mean square radius of gyration along the
channel axis and parallel to one of the channels walls, respectively.

—In Ky, as a function of the confinement strength, 2R,y/d.
The closed circles were obtained in the present study for
chains of N = 100 in equilibrium with channels of various
channel widths d. The symbols are on a straight line with a
slope of 1.68 (—InK, = 4.17 X (2Rg0/d)1'68), in agreement
with the value predicted in the scaling theory, 1/v = 1.695,
and with another simulation result [23]. In the figure is also
plotted the confinement entropy of the athermal chain in the
slit of width d we obtained earlier [17]. The latter, shown in
open circles, lie below those for the channel, indicating an
easier entrance of the chain into the slit compared with the
channel of the same wall-to-wall distance. The two sets of
the plots are almost parallel to each other in the range
plotted.

For a Gaussian chain or any other ideal chain, confine-
ment is independent in each confinement direction. There-
fore, the partition coefficient K.y with a square channel of
d X d is equal to the square of the partition coefficient K,
with a slit of width d. In Fig. 1, the slit data almost overlap
with the channel data when the former are moved up by 2.1,
slightly greater than 2. The confinement of the real chain by
the channel can be regarded as nearly independent in the
two directions. We will discuss the small non-ideality when
we compare the monomer density profile in the channel with
the one in the slit.

Fig. 2 examines one-dimensional nature of the confined
space. The closed and open circles in the figure show Ry,
the square root of the z component in the mean square
radius of gyration for chains of N = 100 and 500, respec-
tively, as a function of d. The scaling theory [19] predicts
Ry ~ d"" =479  \when Ry/d > 1, which was
confirmed in the past simulation studies [21,23,26].
Straight lines with a slope of —0.695 are drawn adjacent
to the plots. Also shown in the figure is R, , the square root
of the x component in the mean square radius of gyration.
A straight line with a slope equal to one is drawn adjacent
to the plots. The longer chains follow the expected Ry ~
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Fig. 3. The ratio of the mean square end-to-end distance and the mean
square radius of gyration, both along the channel, is plotted as a function
of the channel width d for chains of N = 100 (closed circles) and 500 (open
circles).

d and closely follow Ry ~ d~"%_ A slight upward devia-
tion of Ry is observed at small d. The shorter chains do not
follow these relationships except at small d. The deviation
occurs when d is larger and therefore the conformation is
not sufficiently anisotropic (R, and R,, are not much
different). When d is small, R,, is almost the same for
the shorter and longer chains, and Ry of the two chain
lengths is different by a factor of the ratio of the chain
lengths. It indicates that the chain conformation is approxi-
mated by a packed one-dimensional array of spheres of
diameter d [19,20].

The one-dimensional chain conformation is also seen in
the plot of Rﬁ/RéH (Fig. 3), where Rﬁ is the mean square of
the z component of the end-to-end distance. In bulk solu-
tions of athermal chains, the ratio (isotropic) is six at high
concentrations. In dilute solutions, the ratio approaches 6.35
[28]. The confined ideal chains will have the ratio of six. If
the confined chain takes a conformation uniformly extend-
ing along the channel with the two chain ends facing
outside, then the ratio will be 12. The figure shows how
the stronger confinement increases the ratio towards 12.
The chains become increasingly extended to adopt a confor-
mation of a one-dimensional packed array of spheres on
decreasing d, especially for the longer chain. For the shorter
chain, the conformation is more or less a compressed
random coil, and the ratio is around 6.5 at d = 18. Because
of the increase in the ratio in the stronger confinement, the
plot of R in place of R, in Fig. 2 would give a much steeper
slope as large as — 1. The slight upward deviation of Ry for
N = 500 in narrow channels in Fig. 2 is also ascribed to the
change in the conformation in the narrow channels. We will
discuss the chain dimensions of longer chains in the channel
in more details in future.

The two-dimensional monomer density profile (volume
fraction of occupied sites) of chains with N = 100 in the
channel, ¢.(x,y), is shown in Fig. 4 for different confine-
ment strengths. Part a is in a narrow channel (d = 20) and
part b in a wide channel (d = 50). The average volume
fraction in the channel is 5.51 X 107> and 8.33 X 1074,
respectively. The density profile has a plateau at the center
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Fig. 4. Density profile ¢.(x, y) of chains of N = 100 in dilute solutions in (a)
a narrow square channel (d = 20) and (b) a wide square channel (d = 50).

in a weak confinement (d > Ry), but does not when the
confinement is strong.

To compare ¢.(x, y) with the density profile in the slit, we
prepare a plot of

[¢c(x’ y)/d)cE]
[s(X)/ e[ s (v)/ s

where ¢ and ¢ are the volume fractions of the chains in
the surrounding solution equilibrated with the channel and
the slit, respectively, and ¢(x) and ¢4(y) are the profiles in
the slits that confine the x and y directions, respectively. In
this equation, ¢.(x, y)/¢.g, for instance, is the probability for
a site at (x,y) in the channel to be occupied, relative to the
one in the exterior solution in equilibrium, by a polymer
chain with a given chemical potential. For ideal chains,
d.(x,y) P should be equal to the product of two profiles,
d,(x)/ e and ¢ (y)/ P, and therefore Yi(x,y) = 1 for all x
and y. To see whether it is the case for athermal chains at
low concentrations, we plot ¥4(x, y) in Fig. 5 for d = 20. The
profile shown in Fig. 4a was used for ¢.(x,y). For ¢¢(x), a
low concentration profile at ¢; = 0.00105 in the slit with the
same d was used. Note that this ¢.(x,y) does not have a
plateau in the center. Because ¢.(x,y) and ¢s(x) were
obtained for the channel and slit spaces only, we evaluated
¢ and ¢ from the averages of ¢.(x,y) and ¢ (x) and the
partition coefficients (Fig. 1). In Fig. 5, ¢x(x, y) is at around
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Fig. 5. Profile of yi(x, y) for the wall-to-wall distance d = 20. See text for the
definition of ¢(x,y).

0.93 at the center and edges up to around 1.05 toward the
four corners. The average of {i(x, y) with respect to x and y is
less than unity, in agreement with the fact that K lies below
K% in Fig. 1. In a stronger confinement (d = 12), yi(x, y) was
also concave with d(x,y) = 0.66 at the basin and 0.74 in the
corners (not shown). A sharp increase in ¢i(x,y) in the
corners was absent.

The average of Yi(x,y) being less than unity and the
concave profile of f(x,y) indicate that the slit concentrates
the monomers of the excluded-volume chains toward the
center plane more effectively compared with the channel.
The concentration at the center is easier in the slit geometry;
bonded monomers can spread to the neighboring sites on the
infinitely extending mid-plane. In the channel, in contrast,
the spreading is not as easy, since the density must fall off to
zero at the sites on the wall. It appears that the wall-to-wall
distance makes a difference in the profile of /(x,y) in the
corners. Further studies are needed, since ¢.(x,y) in the
corners carries a relatively large error.

Now we look at the profile dgi,o(x) = ¢.(x,x) along the
diagonal of the square cross section (x = y) and the profile
Gmia(x) = P (x,dI2) = ¢ (dI2,y) along the midline
between the opposite pair of walls (x = d/2 or y = d/2).
The two profiles for chains of N = 100 are shown in Fig.
6 as a function of x in x = d/2 for d = 20. Each profile is the
average of four profiles on either side of the center of the
cross section. Also shown in the profile ¢y (x) in the slit of
the same d at distance x from the wall.

We pay attention to the power relationship between ¢ iy,
or ¢ ;¢ and x near the wall. Our expectation is that ¢y ~
x'V, just as ¢y, ~ x'"", and therefore Daiag ~ X" with v =
0.59. We first notice that ¢ ;4 is parallel to ¢y, as expected.
As in the slit [18], the slope near the wall is close to, but
smaller than, the scaling prediction, 1/v = 1.695. Again we
see an example of the need for a positive penetration depth.
Both the data for ¢ ,;q(x) and ¢g;(x) near the wall are on a
slope of 1.695 when y = 0.17 is added to x (not shown).
Likewise, ¢ giag(x) should have an asymptotic slope of 2/v =
3.39. It is, however, not easy to find whether y > 0 is
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Fig. 6. Monomer density profile g,y (x) of chains with N = 100 along the
diagonal of the square cross section of 20 X 20 (closed circles) and the
density profile ¢p;q(x) along the midline between the opposite pair of
walls (closed squares), plotted as a function of the distance x from the
wall. The lines have a slope of 1.695 and 3.39. Also shown is the density
profile in a slit of the same width (open circles).

required or not for ¢, because the data near the corners
carry a much greater error in the logarithmic scale compared
with the data near the walls for ¢ ;5. The behavior of ¢ g
and i, is almost the same in the channel of d = 50 (not
shown).

3.2. Semidilute solutions

Now we examine the effect of the polymer concentration.
First, the overall partition coefficient K increases with an
increasing average monomer density ¢g in the solution
exterior to the channel. The increase is, however, slightly
different from the one we observed in the partitioning with
the slit. Fig. 7 compares the concentration dependence of K
for chains of N = 100 in the channel and the slit of d = 8,
12, and 20. The weak-to-strong penetration transition occurs
also in the channel, but the transition requires a higher ¢g
than it does in the slit.

Fig. 8 compares the partition coefficient K for chains of
N =100 and 500 with the same channel of d = 8. The
increase in K for N = 500 occurs at a higher concentration,
but it does in a narrower range of ¢, quickly approaching
the K for N = 100. It appears that the partitioning of the
semidilute solutions is governed primarily by the correlation
length in the exterior solution, not by the chain length; the
correlation length is determined by ¢g only. The sharp
increase in K for N = 500 is noteworthy. We can expect
that it will become even sharper with a further increase in N
but occur at ¢ = ¢, the threshold monomer density inde-
pendent of N and to be determined later.

The scaling theory can demonstrate the independence
and the sharp increase in K as follows. When the chains
are sufficiently long (Rgy > d), the confinement entropy
(divided by the Boltzmann constant) is given by Nd~ ",
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Fig. 7. Partition coefficient K of athermal chains of N = 100 with square
channels (closed circles; solid lines), plotted as a function of the average
monomer density ¢g in the exterior solution. The dimension d of the cross
section d X d is indicated adjacent to each plot. Also shown are the partition
coefficients of athermal chains of the same length with slits of width d (open
circles; dashed lines).

The penetration of the chains into the channel will occur
when the chemical potential in the surrounding solution
increases to match the confinement entropy times tempera-
ture. The chemical potential (reduced by thermal energy)
of the semidilute solution (¢ > ¢*) is given as
(Pl pHE ™D = NpC"" D Thus a sharp increase in K
will occur at ¢y = ¢ = d~ """, regardless of the chain
length. Note that ¢, shifts to a higher concentration with a
decreasing d. This weak-to-strong penetration transition is
not affected by the interactions between polymer chains in
the channel, because the concentration in the channel is near
zero. What matters are the confinement entropy and the
interactions in the exterior solution only.

The next question is whether K, = K2 holds, compared at
the same ¢g. If the independence of the confinement
between x and y directions is valid also at finite ¢, then
K. = K2.Fig. 8 alsocompares K, and K> of chains of N = 100

Fig. 8. The partition coefficient K, of athermal chains of N = 100 with a
square channel of d X d (closed circles; solid lines) at the exterior monomer
density ¢g is compared with the square of the partition coefficient K of the
same chains with a slit of width d (open circles; dashed lines) at the same
¢g. The value of d is indicated in the figure. Also shown is the partition
coefficient of athermal chains of N = 500 (closed squares; solid line).
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Fig. 9. The —In K, plotted as a function of &g/d for the partition coefficients
obtained for different chain lengths and channel widths. The line has a slope
of 1.695.

for d = 8 and 20. In the wider channel that gives a weaker
confinement, two sets of the plot run close to each other
in the entire range of concentrations. In the narrower
channel, however, there is a difference between the two
sets. The difference maximizes at around ¢g = 0.15. The
smaller difference at higher concentrations indicates nearly
independent partitioning of blobs in the two directions.
Until the solution reaches that concentration, the indepen-
dence is lost. The presence of chain—chain interactions
specific to each confining geometry causes the difference.
Apparently, the excess chemical potential due to the
presence of other chains is higher in the channel than it is
in the slit compared at the same interior concentration when
the confinement is strong.

Another question is whether the partitioning is governed
by the blob size relative to the channel width in the semi-
dilute solutions. We estimate the correlation length of the
exterior solution as &g = Rg0(¢E/¢*)_0'766. Fig. 9 shows K
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Fig. 10. The root mean square end-to-end distance of athermal chains
(N = 100) in the channel direction, plotted as a function of the average
monomer density in the slit, ¢;. The parallel component R} (open circles)
and perpendicular component R, (closed circles) are shown. The channel
width d is indicated adjacent to each plot. The line has a slope of —1/8.
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Fig. 11. Density profile ¢.(x,y) for chains of N = 100 in a channel of d =
20 at (a) ¢y = 0.1385 and (b) ¢y = 0.2770.

as a function of g/d. The data in 0.1 < ¢ < 0.4 are used
for N = 100 and the data for 0.03 < ¢g < 0.4 for N = 500.
The data for N = 100; d =20 are approximately on a
straight line with a slope of 1.695, but the other data are
systematically deviated. It is interesting to see the data for
d = 8 but different chain lengths run close to each other. In
the slit, data in the similar plot were on a slope of 1.7 [12].
The deviation of the plot in the channel is ascribed partly to
the difficulty for K to approach unity before the exterior
solution becomes too much crowded. Data for broader
channels (d > 20) would be adequate for this purpose.
Fig. 10 shows R) and R, the root mean square of the
parallel and perpendicular components (with respect to the
walls) of the end-to-end distance for chains of N = 100, as a
function of the average monomer density ¢y in the channel.
Two channel widths, d = 12 and 20, were used here. Note
that these channel widths do not give a confinement suffi-
ciently strong to extend the chain into a one-dimensional
array of spheres. The conformation is a compressed coil as
seen in Fig. 2. With an increasing ¢, both R and R,
decrease in the channel of d = 20. In the channel of d =
12, R, increases but R decreases. The increase of R is due
to the thinning of the depletion layer. A similar trend was
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observed in the slit [13]. In d = 20, the anisotropy of the
chain dimension is small already at low concentrations. The
straight line in the figure has a slope of —1/8, the exponent
for the contraction in unconfined chains. The contraction of
the chains in the direction parallel to the channel axis
approaches that of the unconfined chains at ¢; > 0.2 for
both d = 12 and 20, as the correlation length in the channel
becomes shorter than d. We expect R, in d = 12 to start
decreasing as well at a higher ¢.

The two-dimensional density profiles in the channel are
depicted in Fig. 11. The profiles are shown for chains with
N = 100 in the channel of 20 X 20 at the average monomer
densities of 0.1385 (a) and 0.2770 (b). The thinning of the
depletion layer is evident at higher concentrations. We will
discuss the density profile in the channel in more detail in
another article on the mean-field Gaussian chain theory of
athermal chains confined to a channel.

4. Concluding remarks

We have shown that the channel geometry allows us to
see a strong confinement without being compromised by the
finite lattice units in the wall-to-wall distance. We could
observe a sharp increase in the partition coefficient on
increasing the concentration for long chains and in a narrow
channel. In the slit geometry, we have not seen such a sharp
increase. The confinement by the square channel was almost
independent in the two confining directions at low concen-
trations or at higher concentrations in the weak confinement.
The monomer density profile in the channel was approxi-
mately given by the product of the density profiles in the
slits in the two directions. It was not the case in the semi-
dilute solutions in the strong confinement, but at higher
concentrations, the independence was mostly regained.
Mean-field Gaussian chain theory for the chains confined to a
channel will be presented in a separate article to compare
with the results of the simulations including those shown
here. Simulation study on confinement of nonlinear chains
in the slit and channel will be also interesting.
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